Repository LOGO
    • Login
    View Item 
    •   Intellectual Repository at Rajamangala University of Technology Phra Nakhon
    • Faculty and Institute (คณะและสถาบัน)
    • Faculty of Engineering
    • Research Report
    • View Item
    •   Intellectual Repository at Rajamangala University of Technology Phra Nakhon
    • Faculty and Institute (คณะและสถาบัน)
    • Faculty of Engineering
    • Research Report
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Cause analysis of defective and bad products using bayesian logistic regression model : case study of autoparts anufacturing factory

    Thumbnail
    View/Open
    ENG_57_11.pdf (1.922Mb)
    Date
    2015-10-15
    Author
    Sangma, Watcharin
    Jiraprasertwong, Pichet
    Honwichit, Worapot
    Metadata
    Show full item record
    Abstract
    This research proposes a Bayesian logistic regression model which is applied to the data from autoparts manufacturing machines. Factors related to defective and bad products are investigated. The proposed model is compared with the logistic regression using maximum likelihood method for parameter estimation. The data were collected from 132 machines in an autoparts manufacturing factory. The research found that useful life, machine type 6, worker group 3 and 4, working step 1 and 2 influence to the risk of producing defective and bad products. When the useful life is increased by 1 month the risk of producing defective and bad products will be increased by 2.2%. The risk that the machine type 6 will produce defective and bad products is 4.078 times greater than the risk that the machine type will do. The risk that the worker group 3 will produce defective and bad products is 61.7% less than the risk that the worker group 12 will do. The risk that the worker group 4 will produce defective and bad products is 61.5% less than the risk that the worker group 12 will do. The risk that the working step 1 will produce defective and bad products is 2.831 times greater than the risk that the working step 4 will do. The risk that the working step 2 will produce defective and bad products is 13.8 % greater than the risk that the working step 4 will do. The parameter estimates from the Bayesian logistic regression are very close to the ones from the logistic regression using maximum likelihood method for parameter estimation
    URI
    http://repository.rmutp.ac.th/handle/123456789/1898
    Collections
    • Research Report [286]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     


    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV